In the present study four catalysts, prepared by four different methods i.e. co-impregnation, citric acid sol-gel, urea nitrate combustion and urea gelation co-precipitation methods, have been used to study the effect of CO oxidation. The precursor Cu(NO$_3$)$_2$3H$_2$O has been used as for the preparation of catalysts having the composition CuCe$_{5.17}$Zr$_{3.83}$O$_{x}$/γ-Al$_2$O$_3$ (25wt%). Catalysts were calcined at 500°C and characterized by BET, XRD, TGA/DSC and SEM. A fixed weight (100 mg) of the catalyst was taken in a tubular fixed bed reactor at atmospheric pressure. 2.0% CO in air at a total feed rate of 60 ml/min was used in the reactor. The oxidation of CO to carbon dioxide was carried out at temperature ambient to 280°C. The preparation methods effect the catalytic activity of the catalysts as is discussed in the results. Excellent activity for CO oxidation is shown by the catalyst prepared by sol–gel method followed by co-impregnation, urea gelation and urea nitrate combustion methods. It exhibited the total conversion at 210°C. All the four catalysts prepared did not show any deactivation activity for 50 hours of continuous runs.

Keywords: CO Oxidation, Alumina, Sol-Gel, Combustion, Oxidation, Ceria, Catalyst

INTRODUCTION

Carbon monoxide is considered as an important air pollutant. It is mainly emitted from industries and transportation activities. Noble metals are considered to be efficient catalysts for CO oxidation (Ruth et al. 2000, Costello et al., 2002; Gardner et al., 1995; Sarkarand Khanra, 2005, Santra and Goodman, 2002).

However, noble metals being expensive and rare, oxides of transition metals, have been studied by many researchers for CO oxidation. (Marba’n, and Fuertes, 2005; El-Shobaky, and Ghozza, 2004, Zheng, et al. 2004, Mguig 2004, Federico 2004).

The catalysts containing oxides of Cu, Cr, Co, Mn, Ni, etc. have been studied by many
Study the Effect on Activity of Alumina Supported CuO-CeO$_2$-ZrO$_2$ Catalysts Prepared by Four Methods for CO Oxidation

workers and are well known to be active in catalytic oxidation of carbon monoxide and hydrocarbons. (Severino, et al. 1998, Hamada 1994, Royer and Duprez 2011).

Mostly γ-Al$_2$O$_3$ is used as the support for catalysts used in oxidation–reduction reactions. It has been found that in many cases, due to formation of metal aluminates, by the reaction between the transition metal oxide and Al$_2$O$_3$, the catalytic activities of γ- Al$_2$O$_3$, supported catalysts decreases with time. Due to its high oxygen storage capacity, ceria is extensively used as a promoter and/or support in many catalytic oxidation reactions. CeO$_2$ stabilizes the catalyst against metal dispersion and stores and releases oxygen (Cole et al. 2010, Liu and Fu 2004).

Mixed oxides mostly shows the higher catalytic activity than that of their individual oxides. (El-Shobaky 2004).

Ce-Zr mixed oxides inhibits the thermal sintering of CeO$_2$ (Monte and Kaspar 2005, Kašpar 2003) and enhances the reducibility of ceria hence the activity of Cu-Ce-Zr oxide catalysts is improved (Kapoor et al. 2001).

It has been also been reported that the incorporation of ZrO$_2$ into CeO$_2$ not only increases thermal resistance of the resulting mixed oxide but also improves other properties of the catalysts forming a Ce-Zr-O solid solution. (Monte and Kaspar 2005, Balducci 1995).

Cao et al. (2008) reported that the synergistic effect between CuO and the Ce$_{0.8}$Zr$_{0.2}$O$_2$ support, were responsible for the high catalytic activity for low temperature CO oxidation. The support has a strong influence on the activity of the catalysts (Ayastuy 2010).

To understand the relation between the preparation methods and the properties of catalysts, number of preparation methods for CuO-CeO$_2$ catalysts have been developed by different workers. A review of different methods of preparation of CuO-CeO$_2$ catalysts and their various applications have been reviewed in earlier work (Prasad and Rattan, 2010).

Very little work has been reported on the alumina supported CuO-CeO$_2$-ZrO$_2$ catalyst for CO oxidation. Marbán and Fuertes (2005), prepared CuO–CeO$_2$ catalysts by sol–gel using citrates and have reported low degree of agglomeration. CuO/CeO$_2$ catalysts prepared with synthesis combined with impregnation method exhibited better catalytic performance (Zeng et.al. 2004). The effect of preparation methods on alumina supported CuO-CeO$_2$-ZrO$_2$/ Al$_2$O$_3$ (15%) catalyst for CO oxidation have been studied in our earlier work (Prasad and Rattan 2012).

The present investigation forms a part of continuing study undertaken to explore the significance of preparation methods on the activity of the alumina supported CuO-CeO$_2$-ZrO$_2$ catalyst for CO oxidation. In the present work, CuO-CeO$_2$-ZrO$_2$/γ-Al$_2$O$_3$ (25%) catalysts have been prepared by four
different methods, characterized by various techniques and evaluated for CO oxidation.

EXPERIMENTAL

Catalyst Preparation

\(\gamma\)-Alumina (25 wt\%, 100–120 mesh size particles) supported-on copper-ceria-zirconia catalysts having composition \(\text{CuCe}_{5.17}\text{Zr}_{3.83}\text{O}_x\) with molar ratio of \(\text{Cu}/(\text{Cu}+\text{Ce}+\text{Zr}) = 0.1\) and of \(\text{Ce}/\text{Zr} = 1.35\) were prepared using all AR-grade chemicals by four different methods, namely, Co-impregnation method (CI), Citric acid sol-gel method (SG), Urea-nitrate combustion method (UC), and Urea gelation co-precipitation method (UG).

The procedure described by Aguila et al. (2008), was used for the preparation of catalyst sample by co-impregnation method. The requisite amount of support with a distilled water solution containing \(\text{Cu(NO}_3\text{)}_2\cdot3\text{H}_2\text{O}, \text{Ce(NO}_3\text{)}_3\cdot6\text{H}_2\text{O}\) and \(\text{ZrO(NO}_3\text{)}_2\cdot\text{H}_2\text{O}\), were mixed and the resulting slurry was evaporated with constant stirring and drying was carried at 105°C, calcined at 500°C for 3 hours under static air in a muffle furnace. The catalyst powders were cooled to room temperature then stored in air tight bottle marked as Cat-CI.

The method described by Liang et al. (2008) was used to prepare the catalyst by Citric acid sol-gel method. The nitrates of the components of the catalysts were dissolved in distilled water, Citric acid and polyglycol were added and the solution was thoroughly mixed. Required amount of alumina was added into the solution with constant stirring and heating at 80°C till transparent gel was formed. The gel was dried at 105°C, powders obtained were decomposed at 300°C and calcined at 500°C for 3 h. The catalyst powders were cooled to room temperature then stored in an air tight bottle marked as Cat-SG.

The method described by Avgouropoulos et al. (2003) was used to prepare the catalyst sample by Urea–nitrate combustion method (UC). Nitrates of copper, cerium and zirconium, and urea, \(\text{CO(NH}_2\text{)}_2\) were mixed with distilled water in appropriate molar ratio. The mixed solution was heated at 80°C and the resulting viscous gel was preheated at 500°C in a fuming cupboard. In a couple of minutes the gel started boiling and ignited spontaneously yielding a foamy voluminous powder. The catalyst sample Cat-UC, obtained was stored in air-tight bottle.

Urea gelation co-precipitation method, as described by Liu, et al.(2004), consisted of mixing the aqueous metal nitrate solutions in the ratio of as described in the above method. The solution was heated at 100°C under vigorous stirring and distilled water was added, boiling the resulting gel for 8 hrs. at 100°C. The resulting gel was filtered and the precipitates were washed twice with distilled water at 50–70°C and then the cake was dried in an oven at 120°C for overnight. After drying it was crushed into smaller particles and resulting powder was calcined in a muffle furnace at 500°C for 3 hours. The sample was termed as Cat-UG.

Catalyst Characterization

Textural characterization of the catalyst samples prepared was done by nitrogen adsorption-desorption at -196°C using
Study the Effect on Activity of Alumina Supported CuO-CeO$_2$-ZrO$_2$ Catalysts Prepared by Four Methods for CO Oxidation

Quantachrome Nova 2200e surface area analyzer. X-ray diffraction (XRD) patterns of the catalysts were collected on a 'X'-Pert Pro Model, Panalytical Co. (Philips) Netherland, powder diffracto-meter using Cu Kα radiation for crystal phase identification of the catalysts. The patterns were recorded at room temperature with a 2θ range from 20 to 80°. For surface morphological studies of the catalysts a high-resolution SEM, Hitachi-3700 N, Japan, was used. TGA/DSC thermograms of the catalysts precursors were recorded by Perkin Elmer, STA-6000, simultaneous thermal analyser.

Catalytic activity
As described earlier (Prasad and Rattan 2009), a compact tubular packed bed flow reactor is used to find the catalytic activity of the catalyst samples prepared. The tests were conducted at atmospheric pressure and temperature range from ambient to 300°C under steady state conditions. No pretreatment was applied before each catalytic test. A gas mixture of 2.0 % CO in air a flow rate of 60 ml min$^{-1}$ was introduced to the reactor. Air used was passed through CaO and KOH to remove moisture and CO$_2$.

Hundred milligram of the catalyst diluted to 5 ml with Al$_2$O$_3$ of same size (100-150 mesh) was placed into the reactor. A temperature controller ($\pm 0.5^\circ$C) was used to heat the reactor. After 60 minutes of steady state the effluent gases were analyzed online by a GC equipped with porapack Q column, FID detector and methanizer for the detection of CO and CO$_2$ using N$_2$ as the carrier gas. Oven, injector and detector temperatures were set at 60°C, 80°C and 80°C respectively. The activity (X) was expressed by the conversion of CO calculated by using the equation:

$$X_{CO} = (C_{COin} - C_{COout})/C_{Coin}$$

Multiple samples of the outlet gas were taken and averaged to ensure the steady state. Temperatures for the light off, 50% conversion of CO and 100% conversion of CO: T_i, T_{50} and T_{100} were used as an index to evaluate the activity of the catalysts.

RESULTS AND DISCUSSION

Fig.1 shows the nitrogen adsorption–desorption isotherms of the catalysts, Cu-Ce$_{5.17}$-Zr$_{3.83}$O$_x$/γ-Al$_2$O$_3$ (25 wt %) prepared by all four method. The isotherms of the prepared catalysts are similar to type II according to De Boer classification. A hysteresis loop with a sloping adsorption curve and desorption curves is observed at high relative pressure (P/P_0) range. The hysteresis loop of Cat-UC is relatively very short in comparison to other catalysts.

The textual properties of the prepared catalysts are listed in Table 1. The pore volume was measured by N$_2$ sorption at its relative pressure, $P/P_0 \approx 0.987$. It is evident from the data that the textual properties (BET surface area, average pore radius and pore volume) vary significantly for the catalysts prepared by different methods. Among the four samples used, Cat-UC method has the least specific area catalyst (19.439 m2/g), and Cat-SG method has the highest specific area (67.413 m2/g) and
Pore volume close to cat-UG.

Pore size distribution of the catalysts is shown in Fig. 2. It can be seen that pores are distributed in a narrow range of 7-30 Å, with dominating pore radius around 12-14 Å in all the catalysts.

The SEM micrographs with a magnification of 5000X of Cu-Ce$_{5.17}$-Zr$_{3.83}$O$_4$/γ-Al$_2$O$_3$ (25 wt %) catalysts prepared with different methods are shown in Fig.3. It is very clear that the morphologies of the catalysts are very different from their components. Thus the preparation method exerts significant influence on the morphologies of the catalysts. From the figure above it is observed that smaller and randomly oriented large number of crystals are seen for in the image for cat-Cl. The

Table 1. Textural characteristic of the various catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>S_{BET} (m2/g)</th>
<th>Average pore Radius (Å)</th>
<th>Total pore volume (cc/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat-Cl(D6)</td>
<td>58.835</td>
<td>47.50</td>
<td>0.1396, pores <650.7 Å</td>
</tr>
<tr>
<td>Cat-SG(E6)</td>
<td>67.413</td>
<td>26.37</td>
<td>0.889, pores <714.6Å</td>
</tr>
<tr>
<td>Cat-UC(F6)</td>
<td>19.439</td>
<td>50.38</td>
<td>0.049, pores <804.2 Å</td>
</tr>
<tr>
<td>Cat-UG(G6)</td>
<td>67.391</td>
<td>29.05</td>
<td>0.111, < 929.4Å</td>
</tr>
</tbody>
</table>
Study the Effect on Activity of Alumina Supported CuO-CeO$_2$-ZrO$_2$ Catalysts Prepared by Four Methods for CO Oxidation

Surface adsorption should be quite good. Cat-SG shows formation of precipitates with crack type of voids and plane area on the surface as compared to other samples. Catalyst cat-UC has more randomly oriented surfaces. Cat-UG shows large number of broken crystals of random shape.

Figure 4 shows the TG-DSC profiles for Cu-Ce$_{5.17}$-Zr$_{3.83}$O$_7$/γ-Al$_2$O$_3$(25%), catalyst

Fig. 2: Pore size distribution of Cat-CI, Cat-UG, Cat-UC, Cat-SG.

Fig. 3: SEM micrographs of catalysts (a) cat-CI (b) cat-SG (c) cat-UC (d) cat-UG at 5.00X
precursors, used for the preparation by co-impregnation method and sol-gel method.

For precursor sample of cat-CI the weight is nearly constant after temperature of about 400°C and loss of weight was attributed to the evaporation of the adsorbed water and structure water. The total weight loss is about 65%. The loss of weight is in two steps and heat flow curve shows that decomposition is exothermic.

In case of precursor sample of cat-SG, the total weight loss is about 65% at 450°C. However weight loss in case of catalyst precursor used continues to loose.

X-ray diffraction patterns of catalysts prepared by four different methods using 2θ positions between 20° and 80° are shown in Fig. 5. The main reflections at 29.1, 33.2, 48.0 and 57.0 of 2θ in the XRD patterns of all the samples correspond to the cubic, fluorite structure typical of CeO₂, and there is no indication of the presence of other phases.

![Fig. 4: TGA/DTA patterns for the precursors of catalysts cat-CI and cat-SG](image1)

![Fig. 5: XRD patterns of (1) Cat-CI, (2) Cat-SG, (3) Cat-UC, (4) cat-UG](image2)
Effect of preparation methods on catalyst activity

Many factors affect the activity of catalysts and are mainly related to the interaction between ceria and copper species (Martinez, A. et al 2003). Pure zirconia is considered as hardly reducible oxide, thus the redox properties of copper supported on it is strongly hindered. Incorporation of Zr into the ceria lattice is known to improve redox properties of the cerium oxide. Aguila et al. (2008) in their work compared the activity of CuO-CeO$_2$ supported on three supports Al$_2$O$_3$, ZrO$_2$ and SiO$_2$ catalysts. The most noticeable synergistic effects are seen when using Al$_2$O$_3$, and SiO$_2$ as support. A significant influence of the preparative method on the activity of the different catalysts is evident.

The results of CO oxidation activity as a function of temperature of the catalysts having same composition, CuCe$_{5.37}$Zr$_{3.83}$O$_x$/γAl$_2$O$_3$ (25 wt %), prepared by four different methods are given in Fig. 6 and Table 2.

Table 2. Effect of catalyst preparation method on the light-off temperature of the catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>T_{10}</th>
<th>T_{50}</th>
<th>T_{100}</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat-Cl</td>
<td>100</td>
<td>160</td>
<td>230</td>
</tr>
<tr>
<td>cat-SG</td>
<td>90</td>
<td>155</td>
<td>210</td>
</tr>
<tr>
<td>cat-UC</td>
<td>60</td>
<td>200</td>
<td>265</td>
</tr>
<tr>
<td>cat-UG</td>
<td>100</td>
<td>200</td>
<td>260</td>
</tr>
</tbody>
</table>

It is very clear that the catalyst prepared by sol-gel method (Cat-SG) exhibited the highest activity showing the lowest temperature, T_{100} for complete conversion of CO at 210°C in comparison to the catalysts prepared by the other methods. The temperature T_{100} (230°C) of Cat-Cl was about 30°C less than that of Cat-UG (260°C).

The activity of Cat-UG and Cat-UC compared with other catalysts, showing T_{100} at the highest temperature of 265°C.
Although at lower temperature (T_{50}) cat-UC and cat-UG showed the equal activity but beyond this temperature inferior activity could be seen from Fig. 6 for these catalysts. The cat-SG exhibited the highest activity and offers better control over textural characteristics. It is evident from Table 1 that the BET surface area (67.413 m2/g) of this catalyst is the highest in comparison to the other catalysts studied.

CONCLUSIONS

Catalysts sample prepared by four different methods having the composition (CuCe$_{5.17}$Zr$_{3.83}$O$_x$/γ-Al$_2$O$_3$ (25 wt %) have been examined for CO oxidation. It is found that the catalytic performance for the said reaction and morphology of the catalysts strongly depend upon preparation methods (Ayastuy et al. 2010). The catalyst prepared by sol gel method, Cat-SG, shows the best catalytic performance among the four. This highly dispersed catalyst is resulted due to uniform dispersion of copper species in the catalyst. The catalyst sample prepared by urea nitrate combustion method presents lowest performance due to sintering. The Cat-UC synthesized possessed sintered large particles probably due to higher local temperature during uncontrolled combustion in the furnace maintained at 500°C. This is clearly seen in the SEM micrograph, evident by lowest BET surface area of the Cat-UC. The ranking order of the preparation methods of the catalyst is as follows: sol-gel $>$ co-impregnation $>$ urea gelation $>$ urea nitrate combustion. All the four catalysts are active for CO oxidation and do not show deactivation of catalytic activity for 50 hours of continuous run at 200°C, of course at different levels of CO conversions.

REFERENCES

<table>
<thead>
<tr>
<th>Page</th>
<th>Study the Effect on Activity of Alumina Supported CuO-CeO$_2$-ZrO$_2$ Catalysts Prepared by Four Methods for CO Oxidation</th>
</tr>
</thead>
</table>

32. Severino, F., Brito, J.L., Laine, J., Fierro, J.L.G. and Agudo, A. L. (1998). Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl\textsubscript{2}O\textsubscript{4} and CuCr\textsubscript{3}O\textsubscript{4} Spinel Type Catalysts, Journal of Catalysis, 177, 82.

